
THAP073

AN XML DRIVEN FRAMEWORK FOR TEST CONTROL AND DATA
ANALYSIS

J. M. Nogiec, K. Trombly-Freytag, D. Walbridge, E. Desavouret, FNAL*, Batavia, IL60510, USA

Abstract
 An extensible component-based framework has been
developed at Fermilab to promote software reuse and
provide a common platform for developing a family of
test and data analysis systems. The framework allows
for configuring applications from components through
the use of XML configurations. Extension is easily
achieved through the addition of new components, and
many application independent components are already
provided with the framework. The core of the system
has been developed in Java, which guarantees its
portability and facilitates the use of object-oriented
development technologies.

1 ARCHITECTURE
 R&D environments impose specific requirements on
the systems used to control tests and analyze test
results. Such systems must be easily modifiable to
accommodate continuously changing demands and to
allow for ad hoc configured experiments and trial runs.
To cope with these problems a component-based
approach to developing software systems has been
adopted at Fermilab’s Magnet Test Facility. The
multitude of existing specialized, single-purpose
systems developed with help of various technologies
and on different platforms is being replaced by a set of
homogeneous systems built on a common framework
that can run on any system that supports Java.

Figure 1: Architecture of the framework.

*Operated by the Universities Research Association under contract
with the U.S. Department of Energy

 The framework consists of a set of core components
and a software bus used as an inter-component
communication mechanism. The bus supports
multicasting and broadcasting addressing modes and
its routing mechanism allows for both source routing
and routing tables. The overall architecture of the
framework is presented in Figure 1.
 Although this framework can support various
architectural patterns, it is especially suitable for a
pipeline architecture, which assumes that data travels
through a series of components.

2 APPLICATION DEVELOPMENT
PROCESS

 In the discussed framework, applications are
assembled from components rather than being
developed programmatically. Programmers develop
components and domain experts assemble systems
from these components. System development can be
viewed as an iterative process of modifying XML
setup files and running the system until the satisfactory
configuration is constructed (see Fig. 2).

Figure 2: System Development Cycle.

3 XML CONFIGURATIONS
 System configurations are written in a specialized
XML dialect. These configurations describe
components, communication patterns, and control
signals. The configuration DTD (Document Type
Definition) is shown in Figure 3.

 >

>

Figure 3: Configuration DTD.

3.1 Component Definition
 In the presented system, components are specialized
JavaBeans that implement one or more of the
interfaces defined in the framework. In its XML
specification (see Fig. 4) the component is identified
by its id and is declared as an object of a given class.
In the JavaBeans model, properties expose all the data
that should be externally visible and accessible. The
XML specification of the property contains its name
and value. Properties allow the system assembler to
tailor a component to the specific task at hand.

Figure 4: Example of a component definition.

3.2 Route Definition
 Components communicate through exchange of
events. A sender component is connected with its
recipients via routes, which denote data paths between
components (see Fig. 5). Communication patterns
describe communication links between components,
with separate links for data events, debug events,
exception events, and control events.

/>
<component id="Chart" class="ems.core.graph.Chart"
 <property name="XPosition" value="0"/>
 <property name="YPosition" value="200"/>
 <property name="title" value="Plot Display"/>
 </component>

Figure 5: Route definitions.

3.3 Controls Definition
 Control signals (control events) are sent to
components to request a specific action. In response,
the component performs the requested action and
updates its state. There exists a set of standard control
signals (init, start, stop, and exit) and this can be
extended by any number of user-defined signals.
Similarly, a standard set of states is defined, which can
also be extended by adding user-defined states.
Example control signals to be sent to all components
are shown in Figure 6.

 <control signal="init" destination="!"/>
 <control signal="start" destination="!"/>

Figure 6: Example of control signals.

In configurations, control signals are used to initialize
components and put them in a right initial state. This
may include initializing devices, connecting to
databases, setting up screens, or creating new log files.

<!DOCTYPE configuration SYSTEM "ems.dtd" [
 <!ENTITY coreComponents SYSTEM "core.xml">
 <!ENTITY dataComponents SYSTEM "data.xml">
]>
<route type="Data" origin="Producer"
 destination="Consumer"/>
<route type="Exception" origin="*"
 destination="ErrorLog"/>
<route type="Debug" origin="*"
 destination="DebugWindow"
<?xml version='1.0' encoding='UTF-8'?>
<!ELEMENT configuration (component | route | control)*
<!ATTLIST configuration version CDATA #REQUIRED
 title CDATA #REQUIRED
>
<!ELEMENT component (property*)>
<!ATTLIST component id CDATA #REQUIRED
 class CDATA #REQUIRED
>
<!ELEMENT property EMPTY>
<!ATTLIST property name CDATA #REQUIRED
 value CDATA #REQUIRED
>
<!ELEMENT route EMPTY>
<!ATTLIST route type CDATA #REQUIRED
 origin CDATA #REQUIRED
 destination CDATA #REQUIRED
>
<!ELEMENT control EMPTY>
<!ATTLIST control signal CDATA #REQUIRED
 destination CDATA #REQUIRED
>

Figure 7: Example of a hierarchical setup file.

3.4 Hierarchy of Setup Files
As a system is constructed using more and more

components, setup files could become very complex,
leading to problems in system debugging and setup file
reuse. Allowing a hierarchy of setup files to be
created and then referenced from a single system setup
file solves this problem. Each of the “leaf” files can
contain XML statements for setting up a single
component or a subsystem, with the root file merely
including leaf files and routing between these
subsystems. Figure 7 shows an example of a root setup

file that includes two subsystem setup files: one that
configures core system components, and the other that
sets up data processing components.

4 TAILORING
 As has been already described, component properties
can be defined in XML configuration files. In addition,
they can be modified at runtime, both
programmatically and interactively. A component can
update another component’s property by sending a
property event to it. The property event contains a
collection of property names and their new values.
The user can also interactively examine and modify
properties of any selected component at runtime. This
is accomplished with help of the property editor
component (see Fig. 8).
This modification of the behavior and presentation
layer of an application at runtime is frequently referred
to as tailoring.

Figure 8: Property editor.

5 MONITORING AND DEBUGGING
 In order to assist in the application development
process, the system has built-in features that help in
debugging and monitoring the application. Debugging
of internal state and behavior of any component can be
switched on or off in its XML setup file or at runtime.
The amount and type of debug information is selected
by enabling specific categories of this information,
such as IO, algorithm, state, control, etc. In response to
these settings, components generate debug events that
are delivered to all the components defined in the
XML configuration as recipients of debug information,
e.g., display or logging components. Debug and
exception information can be saved together with data
in a database or/and in log files.

 Special core components have also been developed
to assist in monitoring of system activity at runtime.
They include an event traffic monitor, a memory
monitor (see Fig. 9), a processing time monitor, and a
debug display.

Figure 9: Memory monitor.

6 SUMMARY
 The presented framework can support various
architectures and provides a sophisticated inter-
component communication mechanism. Some of its
features include: support of multiple communication
patterns, various built-in routing mechanisms, and
provisions for distributed configurations. It is also
highly tailorable, with systems constructed by selecting
components and defining their properties in an XML
configuration and modified dynamically by altering
component properties during runtime. Specialized
mechanisms are built into the framework that provide
for easy troubleshooting, maintenance, and debugging.
On-line monitoring of resources such as time and
memory usage is also included.
The presented framework has been already
successfully used to develop a system to measure the
field quality of accelerator magnets [1].

REFERENCES
[1] J.M. Nogiec et al, “A Flexible and Configurable

System to Test Accelerator Magnets”, PAC’01,
Chicago, 2001

